HLA-E*01:03 binding "VMAPRTVLL" at 2.80Å resolution
Data provenance
Information sections
- Publication
- Peptide details
- Peptide neighbours
- Binding cleft pockets
- Chain sequences
- Downloadable data
- Data license
- Footnotes
Complex type
HLA-E*01:03
VMAPRTVLL
Species
Locus / Allele group
HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities.
Previous studies of HLA-E allelic polymorphism have indicated that balancing selection may be acting to maintain two major alleles in most populations, indicating that a functional difference may exist between the alleles. The alleles differ at only one amino acid position, where an arginine at position 107 in HLA-E*0101 (E(R)) is replaced by a glycine in HLA-E*0103 (E(G)). To investigate possible functional differences, we have undertaken a study of the physical and biochemical properties of these two proteins. By comparing expression levels, we found that whereas steady-state protein levels were similar, the two alleles did in fact differ with respect to cell surface levels. To help explain this difference, we undertook studies of the relative differences in peptide affinity, complex stability, and three-dimensional structure between the alleles. The crystal structures for HLA-E(G) complexed with two distinct peptides were determined, and both were compared with the HLA-E(R) structure. No significant differences in the structure of HLA-E were induced as a result of binding different peptides or by the allelic substitution at position 107. However, there were clear differences in the relative affinity for peptide of each heavy chain, which correlated with and may be explained by differences between their thermal stabilities. These differences were completely consistent with the relative levels of the HLA-E alleles on the cell surface and may indeed correlate with functional differences. This in turn may help explain the apparent balancing selection acting on this locus.
Structure deposition and release
Data provenance
Publication data retrieved from PDBe REST API8 and PMCe REST API9
Other structures from this publication
Data provenance
MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.
Peptide neighbours
P1
VAL
TRP167
TYR159
TYR59
ARG62
THR163
GLU63
TYR7
LEU5
TYR171
|
P2
MET
GLU63
ALA67
MET45
HIS9
PHE22
TYR159
HIS99
SER66
THR70
TYR7
SER24
|
P3
ALA
GLN156
HIS99
TRP97
TYR159
SER66
|
P4
PRO
TYR159
SER66
|
P5
ARG
HIS155
TRP97
GLU152
GLN156
|
P6
THR
TRP97
GLU152
THR70
GLN156
ILE73
PHE74
PHE116
|
P7
VAL
ILE73
ASN77
PHE116
GLU152
TRP133
SER147
GLU114
GLN156
|
P8
LEU
VAL76
ILE73
ASN77
GLU152
LYS146
|
P9
LEU
TYR123
LYS146
LEU81
ASN77
LEU124
PHE116
SER143
THR80
LEU95
ILE142
TYR84
|
Colour key
Data provenance
Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.
Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]
A Pocket
TYR159
THR163
TRP167
TYR171
LEU5
TYR59
GLU63
SER66
TYR7
|
B Pocket
SER24
VAL34
MET45
GLU63
SER66
ALA67
TYR7
THR70
HIS9
HIS99
|
C Pocket
THR70
ILE73
PHE74
HIS9
TRP97
|
D Pocket
GLU114
HIS155
GLN156
TYR159
LEU160
HIS99
|
E Pocket
GLU114
SER147
GLU152
GLN156
TRP97
|
F Pocket
PHE116
TYR123
SER143
LYS146
SER147
ASN77
THR80
LEU81
TYR84
LEU95
|
Colour key
Data provenance
1. Beta 2 microglobulin
Beta 2 microglobulin
|
10 20 30 40 50 60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD 70 80 90 WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM |
2. Class I alpha
HLA-E*01:03
IPD-IMGT/HLA
[ipd-imgt:HLA34202] |
10 20 30 40 50 60
GSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEYW 70 80 90 100 110 120 DRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDGRFLRGYEQFAYDG 130 140 150 160 170 180 KDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETLL 190 200 210 220 230 240 HLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDGT 250 260 270 FQKWAAVVVPSGEEQAYTCHVQHEGLPEPVTLRW |
3. Peptide
|
VMAPRTVLL
|
Data provenance
Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.
Downloadable data
Components
Data license
Footnotes
- Protein Data Bank Europe - Coordinate Server
- 1HHK - HLA-A*02:01 binding LLFGYPVYV at 2.5Å resolution - PDB entry for 1HHK
- Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. - PyMol CEALIGN Method - Publication
- PyMol - PyMol.org/pymol
- Levenshtein distance - Wikipedia entry
- Protein Data Bank Europe REST API - Molecules endpoint
- 3Dmol.js: molecular visualization with WebGL - 3DMol.js - Publication
- Protein Data Bank Europe REST API - Publication endpoint
- PubMed Central Europe REST API - Articles endpoint
This work is licensed under a Creative Commons Attribution 4.0 International License.