Alpha This is a work in progress and may change. Your feedback is very welcome.
  


1DUY

HLA-A*02:01 binding "LFGYPVYV" at 2.15Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B', 'E']
2. Class I alpha
HLA-A*02:01
['A', 'D']
3. Peptide
LFGYPVYV
['C', 'F']

Species


Locus / Allele group


Publication

The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site.

Khan AR, Baker BM, Ghosh P, Biddison WE, Wiley DC
J. Immunol. (2000) 164, 6398-405 [doi:10.4049/jimmunol.164.12.6398]  [pubmed:10843695

The crystal structure of the human class I MHC molecule HLA-A2 complexed with of an octameric peptide, Tax8 (LFGYPVYV), from human T cell lymphotrophic virus-1 (HTLV-1) has been determined. This structure is compared with a newly refined, higher resolution (1.8 A) structure of HLA-A2 complexed with the nonameric Tax9 peptide (LLFGYPVYV) with one more N-terminal residue. Despite the absence of a peptide residue (P1) bound in the conserved N-terminal peptide-binding pocket of the Tax8/HLA-A2 complex, the structures of the two complexes are essentially identical. Water molecules in the Tax8 complex replace the terminal amino group of the Tax9 peptide and mediate a network of hydrogen bonds among the secondary structural elements at that end of the peptide-binding groove. Thermal denaturation measurements indicate that the Tax8 complex is much less stable, DeltaTm = 16 degrees C, than the Tax9 complex, but both can sensitize target cells for lysis by some Tax-specific CTL from HTLV-1 infected individuals. The absence of a P1 peptide residue is thus not enough to prevent formation of a "closed conformation" of the peptide-binding site. TCR affinity measurements and cytotoxic T cell assays indicate that the Tax8/HLA-A2 complex does not functionally cross-react with the A6-TCR-bearing T cell clone specific for Tax9/HLA-A2 complexes.

Structure deposition and release

Deposited: 2000-01-19
Released: 2000-02-04
Revised: 2011-07-13

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Octamer (8 amino acids)

Sequence: LFGYPVYV

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P2 LEU

HIS70
TYR99
LYS66
GLU63
MET45
VAL67
PHE9
TYR159
TYR7
P3 PHE

LEU156
HIS70
TYR99
LYS66
GLN155
ARG97
TYR159
P4 GLY

LYS66
P5 TYR

GLN155
P6 PRO

THR73
P7 VAL

TRP147
HIS114
VAL152
THR73
ARG97
TYR116
ASP77
P8 TYR

THR143
THR73
LYS146
GLN72
VAL76
ASP77
TRP147
P9 VAL

TRP147
THR80
TYR116
ASP77
THR143
LYS146
TYR84
LEU81
TYR123

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
THR163
TRP167
TYR171
MET5
TYR59
GLU63
LYS66
TYR7
B Pocket

ALA24
VAL34
MET45
GLU63
LYS66
VAL67
TYR7
HIS70
PHE9
TYR99
C Pocket

HIS70
THR73
HIS74
PHE9
ARG97
D Pocket

HIS114
GLN155
LEU156
TYR159
LEU160
TYR99
E Pocket

HIS114
TRP147
VAL152
LEU156
ARG97
F Pocket

TYR116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
LEU81
TYR84
VAL95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-A*02:01
IPD-IMGT/HLA
[ipd-imgt:HLA35266]
        10        20        30        40        50        60
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDG
       130       140       150       160       170       180
KDYIALKEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGT
       250       260       270
FQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWE

3. Peptide
LFGYPVYV


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 1DUY assembly 1  
  2. 1DUY assembly 2  

Components

MHC Class I alpha chain [cif]
  1. 1DUY assembly 1  
  2. 1DUY assembly 2  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 1DUY assembly 1  
  2. 1DUY assembly 2  
Peptide only [cif]
  1. 1DUY assembly 1  
  2. 1DUY assembly 2  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/1duy

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes