Alpha This is a work in progress and may change. Your feedback is very welcome.
  


1DDH

H2-Dd binding "RGPGRAFVTI" at 3.10Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
H2-Dd
['A']
3. Peptide
RGPGRAFVTI
['P']

Species


Locus / Allele group


Publication

Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120.

Li H, Natarajan K, Malchiodi EL, Margulies DH, Mariuzza RA
J. Mol. Biol. (1998) 283, 179-91 [doi:10.1006/jmbi.1998.2091]  [pubmed:9761682

The crystal structure of the mouse major histocompatibility complex (MHC) class I molecule H-2Dd with an immunodominant peptide, designated P18-I10 (RGPGRAFVTI), from human immunodeficiency virus envelope glycoprotein 120 was determined at 3.2 A resolution. A novel orientation of the alpha3 domain of Dd relative to the alpha1/alpha2 domains results in significantly fewer contacts between alpha3 and beta2-microglobulin compared with other MHC class I proteins. Four out of ten peptide residues (P2 Gly, P3 Pro, P5 Arg and P10 Ile) are nearly completely buried in the Dd binding groove. This is consistent with previous findings that Dd exploits a four-residue binding motif comprising a glycine at P2, a proline at P3, a positively charged residue at P5, and a C-terminal hydrophobic residue at P9 or P10. The side-chain of P5 Arg is directed toward the floor of the predominantly hydrophobic binding groove where it forms two salt bridges and one hydrogen bond with Dd residue Asp77. The selection of glycine at P2 appears to be due to a narrowing of the B pocket, relative to that of other class I molecules, caused by Arg66 whose side-chain folds down into the binding cleft. Residue P3 Pro of P18-I10 occupies part of pocket D, which in Dd is partially split by a prominent hydrophobic ridge in the floor of the binding groove formed by Trp97 and Trp114. Residues P6 through P9 form a solvent-exposed bulge, with P7 Phe protruding the most from the binding groove and thereby probably constituting a major site of interaction with T cell receptors. A comparison of H-2Dd/P18-I10 with other MHC class I/peptide complexes of known structure provides insights into the possible basis for the specificity of the natural killer cell receptor Ly-49A for several related class I molecules.

Structure deposition and release

Deposited: 1998-06-22
Released: 1999-01-13
Revised: 2011-07-13

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Decamer (10 amino acids)

Sequence: RGPGRAFVTI

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 ARG

TYR159
TYR59
TYR171
GLU163
TYR7
GLU166
GLU63
ARG66
LEU5
ARG62
TRP167
P10 ILE

TYR123
THR80
ALA81
TRP147
ASP77
LEU78
THR143
TYR84
LEU95
ILE142
LYS146
P2 GLY

GLU63
TYR159
TYR7
ARG66
P3 PRO

TYR7
ASN70
GLU24
ARG66
TRP114
TYR159
TRP97
ALA99
P4 GLY

ARG66
TRP114
ARG155
TRP97
ASN70
P5 ARG

ASN70
ASP77
PHE116
PHE74
TRP97
SER73
TRP147
P6 ALA

ARG155
P7 PHE

GLY69
SER73
ASN70
P8 VAL

TRP147
ALA150
ALA152
SER73
LYS146
P9 THR

THR143
SER73
LYS146
TRP147
ASP77
VAL76

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
GLU163
TRP167
TYR171
LEU5
TYR59
GLU63
ARG66
TYR7
B Pocket

GLU24
VAL34
TYR45
GLU63
ARG66
ALA67
TYR7
ASN70
VAL9
ALA99
C Pocket

ASN70
SER73
PHE74
VAL9
TRP97
D Pocket

TRP114
ARG155
ASP156
TYR159
LEU160
ALA99
E Pocket

TRP114
TRP147
ALA152
ASP156
TRP97
F Pocket

PHE116
TYR123
THR143
LYS146
TRP147
ASP77
THR80
ALA81
TYR84
LEU95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKDW
        70        80        90
SFYILAHTEFTPTETDTYACRVKHASMAEPKTVYWDRDM

2. Class I alpha
H2-Dd
        10        20        30        40        50        60
MSHSLRYFVTAVSRPGFGEPRYMEVGYVDNTEFVRFDSDAENPRYEPRARWIEQEGPEYW
        70        80        90       100       110       120
ERETRRANGNEQSFRVDLRTALRYYNQSAGGSHTLQWMAGCDVESDGRLLRGYWQFAYDG
       130       140       150       160       170       180
CDYIALNEDLKTWTAADMAAQITRRKWEQAGAAERDRAYLEGECVEWLRRYLKNGNATLL
       190       200       210       220       230       240
ATDPPKAHVTHHRRPEGDVTLRCWALGFYPAEITLTWQLNGEELTQEMELVETRPAGDGT
       250       260       270
FQKWASVVVPLGKQQKYTCHVEHEGLPEPLTLRW

3. Peptide
RGPGRAFVTI


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 1DDH assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 1DDH assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 1DDH assembly 1  
Peptide only [cif]
  1. 1DDH assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/1ddh

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes