Alpha This is a work in progress and may change. Your feedback is very welcome.
  


1A9E

HLA-B*35:01 binding "LPPLDITPY" at 2.50Å resolution

Data provenance

Structure downloaded from PDB Europe using the Coordinate Server. Aligned to residues 1-180 of 1HHK2 using the CEALIGN3 function of PyMol4. Chain assigment using a Levenshtein distance5 method using data from the PDBe REST API6. Organism data from PDBe REST API. Data for both of these operations from the Molecules endpoint. Structure visualised with 3DMol7.

Information sections


Complex type

Class i with peptide

1. Beta 2 microglobulin
['B']
2. Class I alpha
HLA-B*35:01
['A']
3. Peptide
LPPLDITPY
['C']

Species


Locus / Allele group


Publication

Decamer-like conformation of a nona-peptide bound to HLA-B*3501 due to non-standard positioning of the C terminus.

Menssen R, Orth P, Ziegler A, Saenger W
J. Mol. Biol. (1999) 285, 645-53 [doi:10.1006/jmbi.1998.2363]  [pubmed:9878435

The N and C termini of peptides presented by major histocompatibility complex (MHC) class I molecules are held within the peptide binding groove by a network of hydrogen bonds to conserved MHC residues. However, the published structure of the human allele HLA-B*3501 complexed with the nef octa-peptide VPLRPMTY, revealed non-standard positioning for both peptide termini. To investigate whether these deviations are indeed related to the length of the nef-peptide, we have determined the structure of HLA-B*3501 presenting a nona-peptide to 2.5 A resolution. A comparison of HLA-B*3501/peptide complexes with structures of other HLA molecules exhibits allele-specific properties of HLA-B*3501, as well as peptide-induced structural changes. Independent of the length of the bound peptide, HLA-B*3501 positions the peptide C terminus significantly closer to the alpha1-helix and nearer to the A pocket than observed for other HLA class I/peptide complexes. This reorientation is accompanied by a shift within the N-terminal part of the alpha2-helix towards the middle of the binding groove. Due to the short distance between the N and C termini, the nona-peptide is compressed and forced to zig-zag vertically within the binding groove. Its conformation rather resembles that of a deca-peptide than of other nona-peptides bound to class I molecules. Superposition of both HLA-B*3501/peptide complexes additionally reveals a significant, peptide-dependent deviation between the N-terminal parts of the alpha1-helices which might be due to different positioning of the peptide N termini. Taken together, these data illustrate the strong interdependence between the HLA class I molecule and the bound peptide.

Structure deposition and release

Deposited: 1998-04-05
Released: 1998-10-21
Revised: 2011-07-13

Data provenance

Publication data retrieved from PDBe REST API8 and PMCe REST API9

Other structures from this publication


Peptide details

Length: Nonamer (9 amino acids)

Sequence: LPPLDITPY

Interactive view
Cutaway side view (static)
Surface top view (static - coloured by atom property)
Cutaway top view (static)

Data provenance

MHC:peptide complexes are visualised using PyMol. The peptide is superimposed on a consistent cutaway slice of the MHC binding cleft (displayed as a grey mesh) which best indicates the binding pockets for the P1/P5/PC positions (side view - pockets A, E, F) and for the P2/P3/PC-2 positions (top view - pockets B, C, D). In some cases peptides will use a different pocket for a specific peptide position (atypical anchoring). On some structures the peptide may appear to sterically clash with a pocket. This is an artefact of picking a standardised slice of the cleft and overlaying the peptide.


Peptide neighbours

P1 LEU

TRP167
TYR59
ARG62
PHE33
TYR171
TYR7
TYR159
LEU163
ASN63
MET5
P2 PRO

TYR7
TYR9
ILE66
LEU163
ASN63
TYR99
PHE67
TYR159
P3 PRO

TYR159
ASN70
TYR9
ILE66
TYR99
LEU156
P4 LEU

ASN70
ILE66
THR69
P5 ASP

THR69
ARG97
THR73
ASN70
TYR9
TYR74
P6 ILE

GLN155
THR69
THR73
P7 THR

VAL152
TRP147
THR73
ALA150
P8 PRO

LYS146
THR143
GLU76
ASN80
TRP147
THR73
SER77
P9 TYR

GLN96
ASN80
SER116
TYR84
ILE142
TYR123
ILE124
LYS146
ARG97
ILE95
THR143
TYR74
TRP147
LEU81
SER77

Colour key

Aromatic Hydrophobic Acidic Basic Neutral/polar

Data provenance

Neighbours are calculated by finding residues with atoms within 5Å of each other using BioPython Neighboursearch module. The list of neighbours is then sorted and filtered to inlcude only neighbours where between the peptide and the MHC Class I alpha chain.

Colours selected to match the YRB scheme. [https://www.frontiersin.org/articles/10.3389/fmolb.2015.00056/full]


Binding cleft pockets


Peptide sidechain binding pockets (static)
Peptide terminii and backbone binding residues (static)
A Pocket

TYR159
LEU163
TRP167
TYR171
MET5
TYR59
ASN63
ILE66
TYR7
B Pocket

ALA24
VAL34
THR45
ASN63
ILE66
PHE67
TYR7
ASN70
TYR9
TYR99
C Pocket

ASN70
THR73
TYR74
TYR9
ARG97
D Pocket

ASP114
GLN155
LEU156
TYR159
LEU160
TYR99
E Pocket

ASP114
TRP147
VAL152
LEU156
ARG97
F Pocket

SER116
TYR123
THR143
LYS146
TRP147
SER77
ASN80
LEU81
TYR84
ILE95

Colour key

Binds N-terminus Binds P1 backbone Binds P2 backbone Binds PC-1 backbone Binds C-terminus

Data provenance

N-/C-terminus and peptide backbone binding residues are assigned according to previously published information and pockets are assigned according to an adaptation of a previously published set of residues. All numbering is currently that of the 'canonical' structures of human and mouse MHC Class I molecules.

Chain sequences

1. Beta 2 microglobulin
Beta 2 microglobulin
        10        20        30        40        50        60
MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKD
        70        80        90
WSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

2. Class I alpha
HLA-B*35:01
IPD-IMGT/HLA
[ipd-imgt:HLA34423]
        10        20        30        40        50        60
GSHSMRYFYTAMSRPGRGEPRFIAVGYVDDTQFVRFDSDAASPRTEPRAPWIEQEGPEYW
        70        80        90       100       110       120
DRNTQIFKTNTQTYRESLRNLRGYYNQSEAGSHIIQRMYGCDLGPDGRLLRGHDQSAYDG
       130       140       150       160       170       180
KDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGLCVEWLRRYLENGKETLQ
       190       200       210       220       230       240
RADPPKTHVTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRT
       250       260       270
FQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEPS

3. Peptide
LPPLDITPY


Data provenance

Sequences are retrieved via the Uniprot method of the RSCB REST API. Sequences are then compared to those derived from the PDB file and matched against sequences retrieved from the IPD-IMGT/HLA database for human sequences, or the IPD-MHC database for other species. Mouse sequences are matched against FASTA files from Uniprot. Sequences for the mature extracellular protein (signal petide and cytoplasmic tail removed) are compared to identical length sequences from the datasources mentioned before using either exact matching or Levenshtein distance based matching.


Downloadable data

Data can be downloaded to your local machine from the links below.
Clicking on the clipboard icon will copy the url for the data to your clipboard.
This can then be used to load the structure/data directly from the url into an application like PyMol (for 3D structures) using the load command:
   e.g. load http://www.histo.fyi/structures/downloads/1hhk_1_peptide.cif
or in the case of JSON formatted files to retrieve it and use it as part of notebooks such as Jupyter or GoogleColab.
Please take note of the data license. Using data from this site assumes that you have read and will comply with the license.

Complete structures

Aligned structures [cif]
  1. 1A9E assembly 1  

Components

MHC Class I alpha chain [cif]
  1. 1A9E assembly 1  
MHC Class I antigen binding domain (alpha1/alpha2) [cif]
  1. 1A9E assembly 1  
Peptide only [cif]
  1. 1A9E assembly 1  

Derived data

Data for this page [json]
https://api.histo.fyi/v1/structures/1a9e

Data license

The data above is made available under a Creative Commons CC-BY 4.0 license. This means you can copy, remix, transform, build upon and redistribute the material, but you must give appropriate credit, provide a link to the license, and indicate if changes were made.
If you use any data downloaded from this site in a publication, please cite 'https://www.histo.fyi/'. A preprint is in preparation.

Footnotes